C-pseudo-multiplicative unitaries and Hopf C-bimodules

نویسنده

  • Thomas Timmermann
چکیده

We introduce C∗-pseudo-multiplicative unitaries and concrete Hopf C∗-bimodules for the study of quantum groupoids in the setting of C∗-algebras. These unitaries and Hopf C∗-bimodules generalize multiplicative unitaries and Hopf C∗-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C∗-pseudo-multiplicative unitary, we associate two Fourier algebras with a duality pairing, a C∗-tensor category of representations, and in the regular case two reduced and two universal Hopf C∗-bimodules. The theory is illustrated by examples related to locally compact Hausdorff groupoids. In particular, we obtain a continuous Fourier algebra for a locally compact Hausdorff groupoid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C∗-pseudo-multiplicative unitaries

We introduce C∗-pseudo-multiplicative unitaries and (concrete) Hopf C∗-bimodules, which are C∗-algebraic variants of the pseudo-multiplicative unitaries on Hilbert spaces and the Hopf-von Neumann-bimodules studied by Enock, Lesieur, and Vallin [5, 6, 4, 10, 19, 20]. Moreover, we associate to every regular C∗-pseudo-multiplicative unitary two Hopf-C∗bimodules and discuss examples related to loca...

متن کامل

ar X iv : 0 71 1 . 14 20 v 1 [ m at h . O A ] 9 N ov 2 00 7 Finite - dimensional Hopf C - bimodules and C - pseudo - multiplicative unitaries

Finite quantum groupoids can be described in many equivalent ways [8, 11, 16]: In terms of the weak Hopf C -algebras of Böhm, Nill, and Szlachányi [2] or the finite-dimensional Hopf-von Neumann bimodules of Vallin [14], and in terms of finite-dimensional multiplicative partial isometries [4] or the finite-dimensional pseudo-multiplicative unitaries of Vallin [15]. In this note, we show that in ...

متن کامل

Equivariance and Imprimitivity for Discrete Hopf C * -coactions

Let U , V , and W be multiplicative unitaries coming from discrete Kac systems such that W is an amenable normal submultiplica-tive unitary of V with quotient U. We define notions for right-Hilbert bimodules of coactions of SV andˆSV , their restrictions to SW andˆSU , their dual coactions, and their full and reduced crossed products. If N (A) denotes the imprimitivity bimodule associated to a ...

متن کامل

7 C - pseudo - Kac systems and duality for coactions of concrete

We study coactions of concrete Hopf C -bimodules in the framework of (weak) C pseudo-Kac systems, define reduced crossed products and dual coactions, and prove an analogue of Baaj-Skandalis duality.

متن کامل

ar X iv : 0 70 9 . 46 17 v 1 [ m at h . O A ] 2 8 Se p 20 07 C - pseudo - Kac systems and duality for coactions of concrete

We study coactions of concrete Hopf C -bimodules in the framework of (weak) C pseudo-Kac systems, define reduced crossed products and dual coactions, and prove an analogue of Baaj-Skandalis duality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009